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The hydrodynamic problem of a submerged spheroid in waves is analysed based on 
linearized potential theory. An analytic formulation is derived and demonstrated by 
considering the problem of a stationary spheroid in head or following seas. Tabulated 
numerical results are obtained for a spheroid whose major axis is six times the minor 
axis, submerged at a depth twice the minor axis. Figures for many other cases are 
also provided. It is suggested that the present method can be extended to the problem 
of oscillating bodies at forward speed. 

1. Introduction 
In the prediction of motions of ships and offshore structures in waves, the structure 

is usually regarded as a rigid body having six degrees of freedom. The fluid loading 
on the structure is estimated by linearized potential theory, assuming that the fluid 
is inviscid and incompressible, the fluid flow is irrotational, and both the incoming 
wave elevation and the body oscillation are small. The velocity potential q5 then 
satisfies Laplace’s equation, and the linearized conditions are adopted on the mean 
position of the fluid boundary. 

For most practical geometries, this boundary-value problem can be solved only 
by a numerical method, The approach usually followed is to find a function which 
satisfies the governing equation at discretized points or in a uniform sense rather than 
in the whole continuous fluid domain and its boundary. In principle, with such a 
method one can achieve any desired accuracy by imposing the governing equation 
at more and more discretized points. But this process has obvious practical 
limitations such as computer time. It is not surprising therefore that different 
computer programs using different numerical methods sometimes do not give the 
same results (Eatock Taylor & Jefferys 1986). In these circumstances, part of the 
process of validating the numerical method and establishing convergence charac- 
teristics is to make comparison with analytical solutions. 

Because of the complexity of ship hydrodynamics problems, analytical solutions 
can only be obtained for a few special geometries. Havelock analysed a floating sphere 
in heave motion in 1955. His analysis was extended by Hulme (1982) to the sphere 
undergoing both vertical and horizontal motions, and very recently Wang (1986) 
investigated both radiation and diffraction problems for a submerged sphere. These 
studies are all based on the method of multipole expansions (Thorne 1953), which 
has been proved to be very successful for periodic motions without forward speed. 

It seems difficult to extend this method to the problem of a body with forward 
speed. Thus as a first step to solving the forward-speed problem, this work follows 
a rather different procedure. We use the traditional source-distribution method ; but 
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instead of dividing the body surface into many small panels, as in many numerical 
methods, we expand the source strength into a series of Legendre functions. This 
approach was originally used by Farell (1973) in analysing the wave resistance on 
a submerged spheroid having constant forward speed in otherwise calm sea. His 
formulations have been extended to the case of a submerged spheroid advancing in 
regular waves by Wu (1986), and this paper concerns the special case of zero forward 
speed. The results may be used as a partial check on the more difficult analysis with 
forward speed. Furthermore the present formulation can provide accurate results for 
a wider range of body geometries than circular cylinders and spheres. It has been 
observed that while many computer programs give very similar results for a very 
simple geometry such as a sphere, they fail to reach agreement for many practical 
structures. This work considers the problem of a submarine-like body, namely a 
spheroid. Such a geometry can cause difficulties with some of the numerical methods 
if the aspect ratio is very large : the problem is associated with adopting a sufficiently 
fine mesh near the sharp ends. The analytical solution procedure, however, should 
be capable of resolving the ideal flow in such cases. Results are obtained here for the 
exciting forces on a submerged spheroid in head or following seas. These cases allow 
symmetry to be used in the analysis, although the assumption regarding the 
incoming-wave direction is not essential to the method of analysis. 

2. The mathematical formulation 
We define the coordinates Oxyz so that z points vertically upwards with z = 0 

being the mean free surface, Ox is parallel to the major axis of the spheroid, and the 
coordinates follow the right-hand rule. The centre of the spheroid is located at  
(0, 0, - h ) .  A system of spheroidal coordinates (7, 8, q5) is defined by 

= c coshr case, ( l a )  

(1  b)  

( I c )  

When y = yo, ( 1 )  defines the surface of a spheroid having major axis a = c cosh yo and 
minor axis b = c sinhy,. 

For harmonic fluid motions, the time-dependent velocity potential !€j can be taken 
as !€j = Re (# eiwt). Based on the assumption of the linearized theory, the time- 
independent potential q5 will satisfy the following equations 

y = c sinh y sin 8 sin q5, 

z = c sinhy sin8 cosq5-h. 

Vzq5 = 0 in the fluid, (2) 

where v = w 2 / g  is the wavenumber, w is the wave frequency, g is the gravitational 
acceleration and R = (x2+ y2)k The water depth is assumed to be infinite. For the 
diffraction problem, the potential q5d also satisfies the body surface condition 
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where n is the normal of the body surface So and q5i is the incident potential which 
for a wave of unit amplitude can be written as 

(6) 
i9 

i - w  
q5 - - exp [vz-iv (x cos/?+y sin/?)]. 

The incoming-wave incident angle is defined so that B = 0 corresponds to a following 
sea and p = R corresponds to a head sea. 

The unknown potential (in this case q5d) can be represented by a source distribution 
u(x, q ,  f) over the body surface 

where G is the well-known Green function which can be written as (Wehausen & 
Laitone 1960) 

G = ;+~+rrj l"~, ,exp{k(z+f)+ik[ (z-~)  1 1 v  1 cost+@-q) sint]} dk  dt, (8) 

and the integration path L is from 0 to co and overpasses the singularity a t  k = v. 
The potential q5d expressed by (7) satisfies all governing equations except the 

body-surface condition. This condition is met by an appropriate choice of the source 
distribution, which can be achieved by using 

Since the left-hand side is known from (5),  the solution for the source distribution 
can be obtained. 

For an arbitrary body, the solution of (10) requires discretization of the body 
surface and the problem has to be solved numerically. For a submerged spheroid, the 
source distribution can be expanded as a series of Legendre functions (Farell 1973), 
or 

(11) 
Q) n ( - l ) m + i  (cos0) cosm$ 

U =  x 2 A: 
n-om-0  4~ (cosh yo) sinh qo (cosh2 T~ - cos2 

Thus substituting (8) and (11) into (7), we obtain 

(cos 0 )  cos m$ 
(cosh qo) sinh v0 (cosh2 qo - cos2 0)t 

00 n ( - l ) m + i  
E Z A P  4n o n s o  m-o  

1 1  v "  1 
{ r  rl RJ-. 5, k-v 

x -+-+- dt dk- exp{k(z+c)+ik[(x-X) cost+(y-qr) sint)]}} d8. 

(12) 

14-2 
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Use is made of the following relations (Farell 1973), 

0. X. Wu and R. Eatock Taylor 

c(n-m)! IIsof.dS=- C C A; e ( C O S ~ )  cosmqiQr(coshq), (13) 
n - 0  m - 0  (n+m)! 

o o n  

n-0 m - 0  
exp[kC-ik(X cost+q sint)] vds = &’ C C 

A = kc cost, 
r o o  

1 m n  

n-1 m - 1  
+ C X (Cn,m cosmqi+B,,, s inmqi)e(cos8)e(coshq)  , (16) 

where 

Cn,o  = in(2n+ l ) j n ( A ) ,  ( 1 7 4  

1 
(sec t + tan t )  

(n-m)! = i n + m + l ~  
(n+m)! Bnv 

and j, is the spherical Bessel function of the first kind. e and QF are the associated 
Legendre functions of the first and second kind respectively. We also use 

use: wds 
= I l s o & j l n d t I r  dkexp{k(z+c)+ik[(z-X) cost+(y-q) sint]} ads 

= & I dt dk exp ( - 2kh) Cn, cos m q i e  (cos 0) e (cosh 7) 

$2 C C (-l)n’+l in‘+m’Az’ (sect+tant)m’+ 1 m.1 jn,(d I} 
(sec t + tan t) 

(18) 

m n’ 

n‘ -om’-o  

to obtain 

a, (n-m)! 
q i = - c C  z 4- Q; (cosh 7) e (cos 6 )  cos mqi 

n - o  m-o  

cz m n oo n’ 

4~ 12-0 m - 0  n’-o m‘-0 
+- C C ( e ( c o s h 7 ) q  (cos0) cosmqi z z Az’(-l)n’+l in’+m’ 

QI n’ 

n‘-o  m’-0 

e ( c o s h  7) e ( c o s 0 )  cosmqi C C A?’( - l)n’+l in’+m’ 
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where 
1 

(sec t + tan t)" 
c(t) = (sect + tan t)" + 

The terms in sinmq5 have been neglected due to symmetry in the case of head or 
following seas. To impose the body-surface condition, we also write (6) in terms of 
Legendre functions as 

on 7 = yo, we obtain the infinite set of equations 

2ig d 
exp ( - vh) ( - i)n+m y - [K (cosh yo)]&( vc cos 8) -- 

w d7 

w n' 

n '-om'-o 
[E ( C O S ~  yo)] A?'( - 1 )n'+1 in'+m'l( n, m, n', m') 

C2 d 
4n dy 

+- in+m- 

w n' 

n'-o m'-o 
[q (coshyo)] E A?'( - l)n'+l in'+m'H (n, m, n', m'), (23) 

c2v d +- in+m - 
2n dy 

w h e r e a = + f o r m = O , a = l f o r m > O ; a n d y = l  for/?=O, y = ( - l ) m f o r @ = ~ .  
The two integrals I and H in equation (23) are defined by 

I(n, m, n', m') = s' c(t) T$(t) dt exp ( -2kh)jn(A)jn,(A) dk, (24) 
--x 0 

The essential task in solving (23) is the evaluation of these two integrals. Since 

where Jn++ is the Bessel function of the first kind, and (Watson 1944) 
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where r is the gamma function, we obtain 
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T(n, n’, t) = exp ( -2kh)jn(A)jn4A) dk 
I O  

dk 
7~ OCI (-l)”($k COst)n+n’+zs’ T(n+n’+28+2) 

= Jr exp ( - 2kh) x 
( +n’+29+2) O0 ( - 1)s (+c cos t)n+n’+zs r n 

,,,s!f(n+n‘+s+2)T(n+s+%)T(n’+s+$) 0 

2kc cost - o  s ! r(n + n’ + s + 2) r ( n  + s + $) r(n’ + s + i) 
exp ( - 2kh) kn+n’+2s dk = c 

O3 ( - l ) S ( + c  cos t)n+n‘+2s r ( n +n’+29+2) r (n+n’+2s+l )  = in c - s ! r(n + n’ + s + 2) r(n 4- s 4- $) r(n’ + s + g) (2h)n+n’+28+1 

Using Abramowitz BE Stegun (1965) 

r (2n+2s+2) (2n)i 
r(n+s+$) = 22n+2S+Z-ir(n+s+ 1) ’ 

equation (28) becomes 

T(n,  n’, t) = lh(, - - y t ) n + n ’  c O0 ( - 1 Y ( 7 )  c cost 2s 

8 - 0  

. (30) 
r(n+n’+28+2) r(n+n’+2s+ 1) r (n+s+l)  T(n’+s+ 1) 

X 
8 ! r(n + n’ + s + 2) f (2n+ 2s+ 2) r(2n’+ 29 + 2) 

By substitution of T(n, n‘, t) into (24), I(n,  m, n’, m’) can be obtained in the form 

I(n, m, n’, m’) = 4 c(t) c,‘(t) T(n,  n’, t )  dt, r 
for n + m + n‘ + m‘ even ; and 

for n+m+n’+m’ odd. 

when c cost < h. If c cost 2 h, the direct integration in (28) may be more efficient. 

I(n,  m, n’, m’) = 0, (31 b )  

The series in (30) converges absolutely and can be accurately computed numerically 

To calculate the integration over k in (25), we write 

H(n, m, n’, m’) = J’ c(t) T’(t) H(n,  n’, t )  dt, (32) 
-K 

where (33) 

The definition of L is given as before. 
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Substituting (26) and (27) into (33), and also using (29), we obtain 

417 

O0 ( - l)S($ cos t)n+n‘+28 r n ( +n’+’s+2) wzs+n+n’ (4 H’(n, n’, t )  = in 
s ! T ( n  + n’ + s + 2 )  T ( n  + s + b) T(n’ + s + t )  

00 

= (2c cos t)n+n’ z ( - 1)8(2c cos t)28 
8 - 0  

(v), (34) 
T(n+n’+2s+ 2) T ( n + s +  1 )  Qn’+ s+ 1) 

s ! T ( n  + n’ + s+ 2)  r ( 2 n  + 2s + 2) T(2n’+ 2s + 2) 
H’28+n+n, X 

where 
ks+n+n‘ 

H s + n + n ’  exp (-2kh) dk k-v 
= jL ks+n+n‘- vks+n+n’-i 

exp ( - 2kh) dk  + VH’~+”+~‘-~ (4 k-v 

(4 ks+n+n‘-i exp ( - 2kh) dk+ ,,Hs+n+n’-i 

H’O(v) = exp(-2vh) [-Ei(2vh)-in], (35b) 

and Ei is the exponential integral. As in the case of (30), (34) does not offer a practical 
computational method for large c and v ; but it is particularly efficient when c cost < h 
and 2cv < 1. 

After H’(n, n’, t)  has been found, H(n, m,  n‘, m’) in (32) can be obtained in a similar 
manner to (31): 

H(n, m,  n’, m’) = 4 Tr( t )  !Q’(t) H’(n, n’, t) dt, (36a) 

(36b) 

J t  
for n+m+n’+m’ even; 

for n + m + n’ + m’ odd. 
The formulations above provide a basis for obtaining the analytic solution for 

the scattering potential of a submerged spheroid in head or following seas. The 
remaining problem concerns the existence and uniqueness of a finite solution of the 
infinite sets of equations (23). A sufficient condition is that the sum of the moduli 
of the coefficients is finite (e.g. Hulme 1982). However, it is not unreasonable to 
assume that the solution exists and is unique, as stable and converged results for the 
wave resistance on the spheroid have been obtained by Farell (1973) using this 
method. Thus we may be able to find the solution directly without proof of its 
existence and uniqueness first. 

The solution of equation (23) also requires calculation of the spherical Bessel 
function and the Legendre function. In the general case, this can be achieved by 
means of a numerical method based on recurrence relations (Abramowitz & Stegun 
1965) ; but this procedure cannot always guarantee adequate accuracy for any given 
value of the argument. Round-off error at each step can accumulate a significant error 
in the summed result. Fortunately, we have found that the solution of equation (23) 
converges very rapidly as n increases, especially at low frequency. Thus we use explicit 

H(n, m,  n‘, m’) = 0, 
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expressions for the spherical Bessel functions and Legendre functions up to n = 5 ;  
this number of terms has been found to be sufficient when va < 1 to guarantee the 
accuracy of the numerical results given below. 

3. The exciting force 
In the linearized potential theory, the hydrodynamic pressure can be written as 

P = - w ( 4 i + 4 d ) .  (37) 

The exciting force on the spheroid is given by the integration of the pressure over 
its surface, or 

Here n is the normal out of the body surface having the components 

where 
b cos8 

( b2 cos2 8 + a2 sin2 0)i ’ n, = 

a sin 8 sin 4 
(b2 cos2 8 + a2 sin2 0)i ’ 

a sin8 cos4 
(b2 cos2 8 + a2 sin2 0)i ‘ 

nu = 

n, = 

Substituting (19), (21) and (40) into (38), we obtain the z-component of the exciting 
force 

Fz = -iwp/: do/: dg5(q5i+q5d) b2 sin8 cos8 

m 
= - iwn 1 d0 27c [$ exp ( -  vh) I: Dn, o ( ~ ,  p) Pn (cosh T ~ )  Pn (cos 8) 

n-o  

- c  C A: Qn(coshqo) Pn (cos8) 

+ - I: Pn (cosh yo) Pn (cos 0) C 

co 

n - o  
03 n‘ 

I: A$( - l)n’+l in’+m‘ I ( n , O ,  n’, n’) 
c2 O0 

4n n-o n’-o m‘-o 

00 n’ c2v +- I: Pn (coshTo) Pn (cos0) C A4’(-l)n’+1 in’+m’ 

x H(n, 0, n’, rn’)] +b2 sin 28 

2~ n - o  n’-0 m’-0 

= -iw&nb2 -exp ( - vh)D, , , ( v ,  /3)P1(coshqo)-cA;Q1 (coshqo) 

I m n’ 

n‘-0 mg-0 

r: 
C2 +& P1 (cash qo) I: Z A;’( - l)n’+l in’+m’ [ I (  1,0,  n’, m’) + 2vH( 1, 0 ,  n‘, m’)] . 

(41 1 
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Substituting (23) when n = 1, m = 0 into (41), we obtain an extremely simple result: 

d - CAT Q1 (cosh vo) + CAY - dy [" ('Osh 
d/dy [PI (cosh yo)] 

= j7cp(a2-b2)gwiAT. (424  

Fu = 0, (42 b )  

(424 

Since sin q5 is orthogonal to all terms cos mq5 (m = 0, 1, . . .), we immediately have 

due to the symmetry of the problem. And, similar to ( 4 2 ~ ) )  we obtain 

F, = jnp(a2 - b2)f  uiA:. 

4. The special case of a sphere 
When a = b = ro, the spheroid becomes a sphere. The case of a submerged sphere 

has been analysed by Wang (1986)) using the method of multipole expansions. By 
adapting our source-distribution technique to this particular case, one can provide 
a comparison with his results. In the spheroidal coordinates defined in (1)) the case 
of a sphere arises when yo+ and c+O but 

c cosh yo = ro. (43) 

In view of this limiting process, the problem needs a modification to the general 
procedure given above. 

We first define a2  = C(-l)m&2 (coshy,) 
ro(n + m) ! (44) 

Then by writing the associated Legendre functions involving 7 in terms of a 
large-argument asymptotic form, and using the small-argument form of the Bessel 
function in (26), an expression for q5d may be obtained for the sphere which is 
analogous to (19) for the spheroid. This involves the new set of constants a r ,  which 
are the solutions of an infinite set of linear algebraic equations obtained by satisfying 
the body-surface boundary condition. This set of equations is analogous to (23). 
Finally the exciting forces are obtained in a very similar form to (42), with a y  in place 
of A? and ro in place of (a2 - b2)k 

5. Numerical results and discussion 
The infinite sets of (23) and their counterparts for the sphere have been solved by 

truncating the series at a finite number n = N .  Tables 1 and 2 show the convergence 
of the surge and heave forces with increase of N ,  for a submerged sphere at 
depth h = 1 . 5 ~ .  These have been expressed in the non-dimensional form 
f =  F/$ab2pgv exp (-vh) (with a = b for the sphere). The tables lead to the 
conclusion that over this range of non-dimensional frequency N = 5 gives accuracy 
to four significant digits (results for N = 6 being found identical to the fourth decimal 
point). The comparison with the results obtained by Wang (1986) shows that the 
difference at most happens at  the fourth decimal point (with the exception of Im (f,) 
when va 2 0.6). 

A t  higher frequency than vu = 1 more terms of the series are required, but it is 
found that N = 10 is more than enough to obtain the converged results of table 3. 
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vu 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

-Re (fz) 

N = 3  N = 4  N = 5  

0.0019 0.0019 0.0019 
0.0114 0.01 14 0.01 14 
0.0297 0.0297 0.0297 
0.0546 0.0546 0.0546 
0.0825 0.0825 0.0825 
0.1101 0.1102 0.1102 
0.1350 0.1352 0.1352 
0.1558 0.1561 1.1562 
0.1719 0.1724 0.1725 
0.1832 0.1842 0.1843 

Wang 

0.0019 
0.01 14 
0.0298 
0.0546 
0.0826 
0.1103 
0.1354 
0.1564 
0.1728 
0.1846 

N = 3  

1.5419 
1.5587 
1.5734 
1.5819 
1.5825 
1.5753 
1.5614 
1.5427 
1.5208 
1.4975 

- Im (fz) 

N = 4  N = 5  Wang 

1.5419 1.5419 1.5422 
1.5587 1.5587 1.5591 
1.5734 1.5734 1.5739 
1.5820 1.5820 1.5827 
1.5827 1.5827 1.5835 
1.5755 1.5755 1.5766 
1.5618 1.5618 1.5630 
1.5433 1.5433 1.5446 
1.5217 1.5218 1.5231 
1.4986 1.4987 1.5001 

TABLE 1. Convergence of the 2-component of exciting force on a sphere (h = 1 . 5 ~ )  

vu 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

N = 3  

1.5857 
1.6020 
1.6491 
1.6623 
1.6554 
1.6299 
1.5912 
1.5456 
1.4979 
1.4518 

Re (fz) 

N = 4  N = 5  

1.5858 1.5858 
1.6203 1.6203 
1.6492 1.6492 
1.6625 0.6625 
1.6557 1.6557 
1.6304 1.6304 
1.5919 1.5919 
1.5464 1 .5465 
1.4990 1.4991 
1.4530 1.4531 

Wang 

1.5860 
1.6205 
1.6496 
0.6628 
1.6558 
1.6304 
1.5918 
1.5462 
1.4988 
1.4530 

N = 3  

0.0039 
0.0245 
0.0649 
0.1193 
0.1779 
0.2317 
0.2745 
0.3044 
0.3218 
0.3290 

- Im (fz) 

N = 4  n = 5  Wang 

0.0039 0.0039 0.0039 
0.0246 0.0246 0.0247 
0.0649 0.0649 0.0652 
0.1193 0.1193 0.1197 
0.1780 0.1780 0.1786 
0.2319 0.2319 0.2325 
0.2749 0.2750 0.2755 
0.3051 0.3051 0.3055 
0.3230 0.3231 0.3234 
0.3307 0.3309 0.3310 

TABLE 2. Convergence of the z-component of exciting force on a sphere (h = 1 . 5 ~ )  

-Re CfZ)  - Im (fz) Re (fz, -1m (fz) 

vu Present Wang Present Wang Present Wang Present Wang 

2.0 0.1614 0.1614 1.3130 1.3124 1.1903 1.1903 0.2182 0.2182 
3.0 0.0902 0.0899 1.2239 1.2193 1.1004 1.1004 0.1083 0.1084 
4.0 0.0433 0.0430 1.1585 1.1509 1.0311 1.0313 0.0485 0.0485 
5.0 0.0185 0.0184 1.0765 1.0664 0.9358 1.0643 0.0195 0.0196 

TABLE 3. The exciting forces on a sphere at high frequencies (h = 1 . 5 ~ )  

The difference between the present results and Wang’s is believed to be associated 
with the method of constructing the infinite set of linear equations based on the 
body-surface condition. We have used the orthogonality of q ( x )  and c ( x )  over the 
range [-1, 11 (Abramowitz & Stegun 1965 equation (8.14.11)), while Wang imposed 
the body-surface condition a t  34 discretized points having values of 9 in (cos 9)  
evenly distributed between 0 and n. 

Tables 4 to 6 give the results of the non-dimensional exciting force on a spheroid 
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0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

O.oo00  
0.0002 
0.0007 
0.0017 
0.0031 
0.0051 
0.0077 
0.0110 
0.0151 
0.0198 

O.ooO0 
0.0002 
0.0007 
0.0017 
0.0031 
0.0051 
0.0077 
0.01 10 
0.0151 
0.0198 

O.ooO0 
0.0002 
0.0007 
0.0017 
0.0031 
0.0051 
0.0077 
0.0110 
0.0151 
0.0198 

1.0542 
1.0536 
1.0514 
1.0475 
1.0420 
1.0347 
1.0257 
1.0149 
1.0020 
0.9873 

1.0542 
1.0536 
1.0514 
1.0475 
1.0420 
1.0348 
1.0258 
1.0151 
1.0022 
0.9875 

1.0542 
1.0536 
1.0514 
1.0475 
1.0420 
1.0348 
1.0258 
1.0151 
1.0022 
0.9876 

TABLE 4. Convergence of the x-component of exciting force on a spheroid (h = 28, a = 6b) 

Re (fA -1m (fz) 

va N = 3  N = 4  N = 5  N = 3  N = 4  N = 5  

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

2.0255 
2.0344 
2.0415 
2.0465 
2.0486 
2.0469 
2.0406 
2.0297 
2.01 11 
1.9865 

2.0256 
2.0344 
2.0416 
2.0466 
2.0487 
2.0470 
2.0408 
2.0300 
2.0115 
1.9870 

2.0256 
2.0344 
2.0416 
2.0466 
2.0487 
2.047 1 
2.0408 
2.0301 
2.0116 
1.9871 

0.0002 
0.0017 
0.0054 
0.0121 
0.0222 
0.0361 
0.0538 
0.0751 
0.0995 
0.1264 

0.0002 
0.0017 
0.0054 
0.0121 
0.0222 
0.0361 
0.0538 
0.0752 
0.0995 
0.1265 

0.0002 
0.0017 
0.0054 
0.0121 
0.0222 
0.0361 
0.0538 
0.0752 
0.0995 
0.1265 

TABLE 5. Convergence of the z-component of exciting force on a spheroid (h = 2b, a = 6b) 

va 

1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 

-Re (fz) 
0.0528 
0.0903 
0.1109 
0.1045 
0.0793 
0.0486 
0.0214 
0.0010 

- Im (fz) 
0.8832 
0.7267 
0.5334 
0.3367 
0.1662 
0.0356 

-0.0519 
-0.0995 

Re (fz) 
1.7580 
1.3913 
0.9834 
0.6034 
0.2851 
0.0453 

-0.1101 
-0.1904 

- Im (fz) 
0.2690 
0.3553 
0.3579 
0.3043 
0.2247 
0.1397 
0.0670 
0.0139 

TABLE 6. The exciting forces on a spheroid at  high frequencies (h = 2b, a = 6b) 

of aspect ratio u = 6b, submerged at depth h = 2b. The results again show that N = 5 
is enough when vu < 1.0. When va > 1.0, we need more terms but N = 8 can give 
the converged results in table 6 .  We have also investigated several other cases, and 
the results are given in figure 1 to figure 4. The general feature of these figures is that 
the non-dimensional force is reduced by an increase of either the submergence or the 
length of the major axis for a given length of the minor axis. 
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FIGURE 2. Non-dimensional heave force on a spheroid (a  = 6b) at different submergences 
(A, h = 1.5b; V, h = 2.06; +, h = 3.0b). ( a )  Real part; ( b )  Imaginary part. 



424 Q. X .  Wu and R. Eatock Taylor 

(4 

0 2 4 6 8 10 

va( x 10-1) 

va( x 10-1) 

FIGURE 3. Non-dimensional surge force on spheroids of different aspect ratios (h = 2b; 
A, a = 6b;  V, a = 5b;  +, a = 4b). (a) Real part; (b )  Imaginary part. 
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FIGURE 4. Non-dimensional heave force on spheroids of different aspect ratios ( h  = 2b;  
A, a = 66; V, a = 5b; +, a = 4b). ( a )  Real part; ( b )  Imaginary part. 
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6. Concluding remarks 
This work is motivated by the need for an analytic solution to the problem of a 

body advancing in waves. The method which is commonly used at the present time 
is the simplified two-dimensional strip theory, which requires the body to be slender. 
Application of strip theory is also limited by the assumption regarding the relative 
magnitude of forward speed and encounter frequency. Recently there have been some 
attempts to obtain results using three-dimensional numerical methods, either by 
means of singularity distributions (Chang 1977; Inglis & Price 1981 ; Kobayashi 
1981; Guevel & Bougis 1982), or by combining localized finite elements with a 
boundary integral equation (Wu 1986). Since it has been observed that stable and 
converged results are not easy to obtain and the computations are rather expensive, 
extensive numerical investigation has not so far been achieved. It is therefore 
necessary to provide some analytical solutions as a basis for checking the numerical 
results. It may be seen that the present approach can be readily extended to the 
problem of a submerged spheroid at  forward speed in waves, by substituting the 
corresponding Green function into (7) (Wu 1986). 
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